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My students and I have been pleased to see that the results of Cutting,
DeLong, and Nothelfer (2010) have received considerable attention - in the
legitimate press, on blogs (although often mis-citing our conclusions), in academic
journals, and within in the cinemetrics community. With respect to the latter, Barry
Salt (2010a, 2010b) and I (Cutting, 2010a, 2010b) have already had exchanges on
this, and now Mike Baxter (2013) has joined in, along with some new thoughts by
Salt (2014).

Autoregression. Let me first address what I take to be the major issue raised
by Baxter, who focused on our invention and use of a modified autoregressive model
(mAR). Autoregression is a procedure, used mostly in signal processing, to look at
the patterns in a signal (a vector, or series of numbers) by comparing it to itself at
various lags. A lag of 0 indicates a straightforward correlation of all values with
themselves, and the correlation is always 1.0. However, things begin to get
interesting when one staggers the values by 1, correlating the 1st with the 2rdvalue,
the 2nd with the 374, and so forth. A significant correlation at Lag 1 indicates a
carryover effect and a nonindependence in the series of numbers. And, as one might
suspect, one doesn’t stop there, but goes on autocorrelating at Lags 2, 3, 4, and so
forth. Of interest here, is the sustained significant correlations as the lags increase.
The longer the stretch of significant correlations the more the elements of the signal
(here shot durations) effect one another, indicating what we have called the
systematic and increasing “local” effects in the pacing in movies.

How does one assess? One first asks if the autocorrelations are reliable at Lag
1; if so are they reliable at Lag 2 and still reliable at Lag 1? If so are they reliable at
Lag 3 and still reliable at Lags 1 and 2?7 And so forth. One continues this process until
one has reached the maximum lag that is reliable with all the previous lags also
reliable. Typically in signal processing one detrends the data, and this is what Baxter
(2013) and Redfern (2012) have done. Detrending is done, normally, to make sure
that the ends of the vector (the first and last numbers) are the roughly same,
extracting a regression line from the data, and linearly changing all of the data in
between. It should be said that movies have a typical, and different trend that is far
from linear (Cutting, Brunick, & DeLong, 2012) - the shots of the first few minutes of
a film tend to be longer than all others, followed by a long plateau that goes through
the 34 mark of the film (to the beginning of the climax); the shots then grow shorter
still, through the climax, and then return to the general level of the film average
during an epilog.
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The autoregressive procedure essentially treats the numbers as a circular
vector, abutting the first and the last. If there is a great discontinuity between the
ends, and particularly if the vector length is relatively short, the results without
detrending can be very misleading. However, if the vector is long and relatively
stationary (the variance doesn’t change much throughout) detrending is not really
necessary. Moreover, when [ detrended a selection of these films, the results [ am
about to report didn’t change. Thus, we didn’t detrend these data in Cutting et al
(2010), and I haven’t detrended them in the new analyses here.

Back to mAR. We invented mAR in part, as Baxter noted and as we said in
Cutting et al (2010), because partial autocorrelation functions are noisy (see also
Redfern, 2012). We also wanted a measure that was continuous rather than discrete
because the statistics we would use assumed continuous variables. Nonetheless, the
careful analyses of Baxter suggest that the decision to use mAR was not entirely
effective in capturing the essence of the partial autocorrelation functions. More
pertinently here, however, the left panel of his Figure 3 shows that, for various
measures of autocorrelation, detrended or not, the pattern of results is essentially
the same. For our film results there is a curvy line descending from 1935 to about
1960 then arching upward with an apparent asymptote at about 1990. The
confluence of Baxter’s five separate methods is a testament to the robustness of the
data and the noncriticality of any particular method. Moreover, looking at his figure,
it seemed to me that it was reasonably plausible that there was still a linear trend
lurking there.

So, using the statistical package JMP I reanalyzed the data of the 150 films
reported in Cutting et al (2010) and the ten newer films released in 2010 reported
in Cutting, DeLong, Brunick, Iricinschi, and Candan (2011). As did Salt (2014), we
corrected 14 of the shot-duration series in the first group (not analyzed by Redfern,
2012 or Baxter, 2013) to remove the negative and zero shot durations (due to typos
in the column of frame numbers). Moreover, some of these series are different than
those that we deposited on the Cinemetrics website. As we go through these films
for new analyses, we occasionally discover cuts that we missed or that we falsely
inserted before. Thus, in my new analyses I include the corrections made for the 24
films analyzed by Cutting, Brunick, and Candan (2012) and Cutting and Iricinschi
(2014). The admonitions of Smith and Henderson (2008) in their discussion of “edit
blindness” (not detecting cuts) should be taken seriously by cinemetricians - it is a
very difficult task to determine all the shots of a complete film.

For their AR analyses Baxter and Redfern used ranked data. That is, the
magnitudes of each shot duration were ranked and then the analysis done on the
ranks rather than on the normalized (mean = 0, standard deviation = 1) metric data.
A reason for this is to remove the effects of significant outliers (long takes). But
Baxter also suggested that a log transform of the data might satisfactorily remove
such outliers, so [ used the log-scaled shot-duration data for each film and then
normalized them. The procedure was as outlined above. I incrementally increased
the integer in the specified AR(n) algorithm until I lost a string of significant results.
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[ then recorded the integer n that yielded a significant correlation with every lower
lag (n- 1, n -2, etc.) also significant.

Data are shown in Figure 1, with the AR index (the largest significant string
of correlations) on the ordinate (y axis) and release year of the film on the abscissa
(x axis). Remember, the results of the AR(n) analysis only allow for cardinal results
forn-0,1,2,3,4,5, 6,and even 7. Thus, clusters of films for each release year and
each AR value occupy the same space in the graph, but are spread here to see the
groupings of identical results for different movies. In what follows I will assume that
these are continuous data. Obviously they are not, but [ cannot make the
comparisons needed without this assumption. It is also an assumption that is made
quite a bit in psychology, and particularly psychophysics, since analyses on large
sets of ordinal data often converge strongly on continuous (metric) data.

A linear model fits the data well (¢(158) = 6.85, p <.0001, d = 1.09),
accounting for 22.89% of the variance in the data. The cubic model fits somewhat
better (AF(2,158) = 3.21, p =.043, d =.28), accounting for 24.99% of the data. The
cubic model is somewhat like Baxter’s loess (or lowess, for LOcally WEighted
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Figure 1: A scatterplot of the autoregressive indices - AR(n) - for 160 popular films, 10
in each of 16 release years from 1935 to 2010 in five year intervals. Two fits to the data
are also shown: a linear fit (endorsed originally by Cutting, DeLong, and Nothelfer,
2010) and a cubic fit, with roughly the same shape as the loess fit used by Baxter
(2013).
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regreSSion) fit with a quadratic kernel and moving window of 34 of the total release-
year span. The reasons for choosing the cubic fit here are twofold - first, it seems to
mimic well Baxter’s loess fit in his Figure 3 (left panel); and second, it allows a
comparison using the number of parameters in the two models. Loess fits are
descriptive, but because it can be difficult to define their parameters they are less
appropriate for model comparisons.!

Since the models have unequal numbers of parameters (linear = 1; cubic = 3)
it is traditional in the model fitting literature to penalize the model with more
parameters (see, for example, Myung & Pitt, 2002). The reason is that the more
complex model might be overfitting the data. The rationale for this is fairly
straightforward; two points can be fit by a line (n-1, or 2-1, or 1 dimension), three
points by a plane (3-1 or 2 dimensions), and so forth. Generalizing, any model with
n-1 parameters (dimensions) can fit n data perfectly. This is overfitting. Of course,
most models have nowhere near the number of data being fit, but this is always an
important issue to consider.

Comparisons among models with different numbers of parameters can be
done by considering the Bayesian Information Criterion (BIC) for each fit. This is a
calculation where the model with the smaller BIC number is considered the better
fit in light of parameter differences. The BIC value for the linear fit is 531.42,
whereas that for the cubic fit is 537.15. The magnitude of these numbers doesn’t
matter, only the fact that one is smaller than the other. Thus, the linear fit should be
considered better that the cubic fit. Given the closeness of the comparison seen in
Figure 1, however, only a curmudgeon would soundly reject the cubic fit.
Nonetheless, at least there is certainly no reason to reject the linear fit in this
context.

Salt (2013) is correct about the relations among AR values, release years, and
number of shots per film. That is, when both shots and release year are used in a
regression to predict the AR index, the effect of shots is reliable (¢t(157) = 9.54, p <
.0001, d = 1.52) whereas the effect of release year is not (¢(157) = .89, p =.37). Thus,
insofar as I can claim that there is an evolution in the increasing correlations in the
shot durations of popular movies, this seems driven by the fact of shorter shot
durations, and thus more shots. The importance of the both AR index trends is that
it measures the correlations of shot durations “locally” in the vector of shot
durations.

Fractal-like patterns in the shot durations of movies. Cutting et al (2010)
analyzed the shot-duration series in two ways - “locally” (using autoregressive
measures) and “globally” (using a whitened fractional Brownian measure, a
combination of 1/f“a and white noise; Gilden, 2005, 2009). We did so because
there is considerably controversy over local vs. global effects in the literature on

I Baxter’s quadratic kernel has two parameters and, intuitively, the 34 moving window along the shot
vector would be a third.
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Figure 2: A scatterplot of the slope (o) of each of the same 160 popular films where
each series of shot durations was fit to a function with two parameters, white noise
and a 1/f"a component (Gilden, 2001; Thornton & Gilden, 2005). The scatterplot is fit
with both linear function and quadratic functions.

serial reaction time (RT; Van Orden, Holden, & Turvey, 2005; Wagenmakers, Farrell,
& Ratcliff, 2004). We hoped that by using both, and by finding similar trends in both,
we could set this controversy aside.

Baxter (2013) spent little space reanalyzing the differential slopes of popular
films reported by Cutting et al (2010), which we regarded as the most important
result in our paper, and which received the most press. We claimed that these slopes
- the exponent a the pattern 1/f "« fit to the power spectrum derived from the
series of shot durations - increasingly approached a value of 1.0 from about 1960 to
the present day. Both linear and quadratic trends were reliable. Moreover, what
made that result potentially newsworthy is that the pattern of reaction times in
many cognitive tasks also has an exponent o that approaches 1.0. Thus, perhaps
movies, which exogenously drive our attention through eye movements that occur
after every cut (Smith, Levin, & Cutting, 2012) are evolving to match the natural,
endogenous patterns of long temporal spans of our attention.

Baxter refit our slope data with another loess function in his Figure 4, and
found, at least to his eye, less than convincing evidence for an upturn in a quadratic
function. Fair enough. So I recalculated the slopes for all of the films, especially
including those with slightly modified shot duration vectors, and also added the ten
films from 2010. Results are shown in Figure 2, with linear and quadratic regression
lines fit to the data.
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The linear function, although very shallow, is statistically reliable (F(1,159) =
9.64, p <.024, d = .49). Thus, although it would likely convince only the faithful,
there is an increase in slope over release years, suggesting an evolution in the
editing patterns of popular movies. Moreover, this increase remains reliable (t(157)
= 2.06, p <.04, d =.33) when regressed with the number of shots per film, which is
also a reliable predictor. Notice, again in congruence with the suspicions of Salt
(2014), the effect of the number shots is the stronger of the two (¢(157) = 5.24, p <
.0001, d = .84).

The linear function accounts for 3.17% of the variance in the data, whereas the
quadratic function accounts for 7.32%. The BIC criterion favors the quadratic fit
(BIC = 12.80) over the linear fit (14.73). Thus, the quadratic fit to the data should be
preferred despite its extra parameter (2 vs. 1). Both results parallel those found in
Cutting et al (2010). Thus, I see no reason to step back from our previous
conclusion: Our study “demonstrated that the shot structure in film has been
evolving toward 1/f spectra (again, mixed with white noise)” (Cutting et al, 2010, p.
7). Again, the importance of the slope measure is to demonstrate the change in the
“global” pattern of correlations.

Salt (2014) doesn’t much like our two-component fits of white (3, or random)
noise and 1/f "o (non-random) noise spectra. He asks (p. 2): “how does one identify
which values relate to which part of the division into random and non-random
values.” The answer is that one simultaneously fits both o and p to the data, and
finds the best simultaneous fit. This is a fairly standard procedure in model fitting.
But more importantly, he worries (p. 2) that “all shot lengths are signal, and none of
them are noise, since their [sic] was a series of more or less conscious choices to
make the shots the length they are.” Of course, there is a sense in which Salt is
correct, but there is an equal sense in which RTs are also all signal. The issue is that
the terms “signal” (or 1/f o pattern) and “noise” are used in special ways in this
context. In fact, both are called “noise” with the former called “pink” and the latter
called “white.”

Gilden’s (2001, 2009) has called his model whitened fractional Brownian
motion. The “whitened” part is the addition of white noise, and the “fractional
Brownian” part means that the term a in 1/f *a can vary (but will typically be near,
and often below, 1.0). In its application to RTs, these two components have well
established precedents. Wing and Kristofferson (1973) modeled RTs with two
components, one of neural noise (what state the nervous system is in in its
readiness to respond, which can be modeled as random, or as “white noise”) and
one of motor output (for example, how long it takes to initiate and execute a finger-
press, non-random). Gilden (2001, 2009) simply substituted 1/f”a noise for the
nonrandom part.
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What are these random and non-random components in a series of shot
lengths? Good question. One pragmatic answer is that these needn’t be specified
since Cutting et al (2010) were simply looking for a parallel between the series of
shot durations and those of RTs. A more acceptable answer, however, could be that
the random component can be found in the juxtaposition of details within the takes
that must appear before a cut can be made. Suppose one is choosing a shot among
ten takes for a given shot. The critical portions of all of the takes will be different in
duration and the differences can be considered more or less random (f3) around
some mean value. The “ideal” of the critical attributes of the take, which would form
the basis of why the shot would appear in the movie, could be the mean duration of
all of those takes. This value could contribute to global component (which happens
to be modeled by 1/f"a.).

In other words, every shot has to do something in a movie, otherwise it
wouldn’t be there. That something will vary in duration across takes, where 3
represents that variance (with the assumption that that variation is random) around
some mean. The editor selects the frames from one of these takes which will have a
duration of the average sequence in the takes, plus or minus some random interval.
In other words, one might say that the 1/f ~a. component measures the conceptual
intentions of the film editor (and director) along with the narrative structure of the
movie, whereas the white noise component measures the variability of conditions
across the set of takes. And this is not the only possible construal of a two
component editing process, but it seems reasonable.

Scientific Inference. In summary, it might prove useful to reconsider Baxter’s
(2013) four-step approach to our analysis (Cutting et al, 2010), with my annotations
below:

1. The shot duration data for a film are converted, by statistical methods, into
indices measuring some property of interest.

Cutting et al (2010) did this and I've done it again here, this time for AR indices (a
“local” measure in the correlations of shot durations), and again for slope indices
(o, a “global” measure of correlations). In both analyses some of the data are
corrected from those used by Cutting et al (2010); again, it would appear that
because of “edit blindness” (Smith & Henderson, 2008) one must be continually
wary of statements that complete accuracy in determining shot structure has been
attained.

2. Statistical methods are used to identify temporal patterning in the indices.

Again, | have repeated this, and the new analyses reveal upward trending patterns
for both indices, from at least the 1950s to the present for the AR measures (a local
measurement) and at least the 1970s to the present for the slope measures (a more
global measurement). Statistically appropriate claims, however, can be made for
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linearly increasing trends from 1935 to 2010 for both measures.

3. A “filmic’ interpretation is offered for the patterns detected, namely they are
evolving.

Evolution in this context means consistent, directional change; and might be
opposed to faddishness, where changes oscillate among alternatives. [ have
deliberately conflated the use of this one meaning of the term “evolution” with its
biological meaning. Clearly people are not evolving to watch movies, but it can be
said that movies are changing to accommodate perceptual and cognitive abilities of
viewers. It should also be said, however, that that statement was largely speculation
in 2010. Nonetheless, the claim seemed to make intuitive sense.

More recently, my students and [ have tracked many other “evolutionary” changes
in movies in our sample over the span from 1935 to 2010 (Cutting & Candan, 2013),
putting more meat on the general claim. Beyond the generally and roughly linear
log-scaled shortening of shot durations, certainly the most commonly cited change
in film (Bordwell, 2006; Cutting, Brunick, & Candan, 2011; Cutting, DeLong, Brunick,
Iricinschi, & Candan, 2001; Salt, 2006, 2009), there has been a more or less linear
increase in motion and change in movies (Cutting, DeLong, & Brunick, 2011; Cutting,
DeLong, Brunick, Iricinschi, & Candan, 2011), a more or less linear increase in the
(negative) correlation between shot durations and the amount of motion in the shot
(shorter shots now have more motion; Cutting, DeLong, Brunick, Iricinschi, &
Candan, 2011), a generally linear shift shot scales towards more closeups (Salt,
2009; Cutting & Iricinschi, 2014; Cutting, 1914a), an increase in the use of
luminance and motion contrasts across the screen (Cutting, 2014b), a change in the
use of location, time, and character shifts across scenes (Cutting, 2014a), a linear
shortening of shot durations and shot scales in re-establishing shots (scene-opening
shots revisiting locations seen before; Cutting & Iricinschi, 2014), and a decline in
the use of dissolves and fades (Carey, 1974, 1982; Cutting, Brunick, & DeLong,
2011). It should now be clear, then, that all of these consort to support the idea that
film style is evolving.

4. Psychological theories of attention are offered to ‘explain’ this evolution.

Every cut demands a reallocation of attention (that is, at minimum, it will cause the
viewers eye to move). About 95% of all shot transitions in the corpus of films
sampled are separated by cuts, and in contemporary films that value is almost 99%.

It happens that endogenous attention patterns, as measured in RTs in perceptual
and cognitive experiments, generate RT series that have a 1/f-like pattern. It also
happens that the shot-duration patterns in the films analyzed in this corpus can be
said to be approaching a 1/f pattern.

These statements reveal only a parallel; they do not really form an “explanation,” or
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at least not causal connection. The linkages are these: (a) Natural attention over an
extended timeframe is patterned, (b) attention can be driven by eye movements, (c)
cuts in film generate eye movements, and (d) cut patterns in film generate patterns
that are increasingly like those of natural attention. Again, there is no logical
necessity for accepting this parallel and our conclusion; no causal linkage has yet
been demonstrated (although we are working on this). But, I would claim again, it
does have some intuitive plausibility.

Cross-disciplinary differences, sampling, and data. Data are data and can
be fit in many ways. I have no problem with loess fits or with moving averages as
descriptions of data. However, I do have problems when they are used in conjunction
with models and theories. The problem, at least for me as a psychologist, is that |
have a modicum of distrust in our own sampling methods when we chose these 160
movies.

Not trusting ourselves to pick films, my students and I used an external
source - IMDDb (Internet Movie Database) ratings and reports - to select movies and
we chose those from among the most popular and the most often seen, under the
constraint that we wanted movies from five genres, if they could be had -
animations, action films, adventure films, comedies, and dramas. But did we choose
truly “representative” movies of each release year? I have no idea and I will never be
sure; moreover [ don’t even know what “representative” might mean. The upshot of
this quandary is that when I look at the small wrinkles in the loess and moving
average fits such as those plotted by Baxter (Figure 4) my first response is to think
that the stimulus movies may have been slightly mis-sampled. After all the variance
differences in slopes in Figure 2 across different release years is impressive. My
choice of using linear, quadratic, and cubic model fits is in the hope of glossing over
slightly misrepresentative subsamples in any given release year.

Another attraction of linear, quadratic (and even cubic) fits is that they seem
“simple” and cover the entire data set. Simplicity in theories has long been a popular
tenet in science (Goodman, 1983; Kuhn, 1977), and is reflected in the increased use
of metrics such as BIC in model comparisons. One could argue that this is a belief in
some Platonic truth about data and results; that some “ideal” and “truthful” function
underlies the mess of reality. But actually, at least for me, it is more of a disbelief in
relatively small numbers. Ten films per release year is not very many, but before
Cutting et al (2010) no one had analyzed even one film in the manner that we had.

In conclusion and in brief, | am pleased for Baxter’s careful consideration of
our data and for Salt’s (2014) continued grappling with the issues we have
broached, but after reanalyses of our data I see no reason to change from our
original stance.
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